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Abdominal aortic aneurysm (AAA) remains the second most
frequent vascular disease with high mortality but has no approved
medical therapy. We investigated the direct role of apelin (APLN)
in AAA and identified a unique approach to enhance APLN action
as a therapeutic intervention for this disease. Loss of APLN
potentiated angiotensin II (Ang II)-induced AAA formation, aortic
rupture, and reduced survival. Formation of AAA was driven by
increased smooth muscle cell (SMC) apoptosis and oxidative stress
in Apln−/y aorta and in APLN-deficient cultured murine and human
aortic SMCs. Ang II-induced myogenic response and hypertension
were greater in Apln−/y mice, however, an equivalent hyperten-
sion induced by phenylephrine, an α-adrenergic agonist, did not
cause AAA or rupture in Apln−/y mice. We further identified Ang
converting enzyme 2 (ACE2), the major negative regulator of the
renin-Ang system (RAS), as an important target of APLN action in
the vasculature. Using a combination of genetic, pharmacological,
and modeling approaches, we identified neutral endopeptidase
(NEP) that is up-regulated in human AAA tissue as a major enzyme
that metabolizes and inactivates APLN-17 peptide. We designed
and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2,
that is resistant to NEP cleavage. This stable APLN analog amelio-
rated Ang II-mediated adverse aortic remodeling and AAA forma-
tion in an established model of AAA, high-fat diet (HFD) in Ldlr−/−

mice. Our findings define a critical role of APLN in AAA formation
through induction of ACE2 and protection of vascular SMCs,
whereas stable APLN analogs provide an effective therapy for
vascular diseases.
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AAA is defined as an enlargement of the AA to >1.5-fold of
its normal size, and the overall AAA prevalence is estimated

to be 6% in men and 1.6% in women (1–3). The asymptomatic
nature of AAA makes the diagnosis extremely challenging,
whereas ruptured AAA accounts for ∼15,000 deaths in the
United States annually (4). Open surgical repair or endovascular
repair are the only treatment options for patients with advanced
AAA. Importantly, several modes of medical therapy have failed
to provide benefits in patients with AAAs (1–3). Therefore, a
better understanding of the cellular dysregulation and signaling
networks responsible for the formation and progression of AAA
is necessary for the discovery of novel and effective therapies.
Homeostasis of endothelial cells and vascular SMCs (VSMCs),

the major cell populations of the vascular wall, play a crucial role
in AAA development and disease progression. Activation of the
RAS and production of Ang II lead to adverse vascular remodeling

as well as many other cardiovascular pathologies (5). Meanwhile,
the APLN pathway has emerged as a major peptide hormone
pathway capable of exerting beneficial metabolic and cardio-
vascular effects (6–10). APLN is widely expressed in mammals
including in endothelial cells and VSMCs (11, 12). The APLN
precursor peptide is processed into several peptides including
APLN-17 (13, 14), the most potent APLN peptide in the car-
diovascular system. ACE2 is the major negative regulator of the
RAS and converts Ang II into the vasculoprotective peptide,
Ang 1–7 (5, 15–17).
In this study, we defined a marked susceptibility of the ab-

dominal aorta lacking APLN to the development of AAA in
response to Ang II. This was driven by reduced ACE2 levels,
deficiency, oxidative stress, and apoptotic cell death of VSMCs.
We identified NEP as a key enzyme that degrades and inacti-
vates the active APLN-17 peptide, developed a stable APLN-
17 analog resistant to NEP degradation, and established the
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therapeutic effects of this developed stable APLN analog in
preventing vascular disease and formation of AAA.

Results
Loss of APLN Enhances Susceptibility to AAA. Histological analyses
of human AAA revealed severely disrupted medial structure
characterized by fragmented elastin fibers associated with the
loss of SMCs and increased cell death in AAA specimens com-
pared with the nondiseased aorta (NDA) (Fig. 1 A and B and SI
Appendix, Fig. S1A and Table S1). These structural changes in the
aneurysmal aorta were associated with increased APLN levels
compared with nonaneurysmal aorta (Fig. 1 C and D and SI Ap-
pendix, Fig. S1B) and APLN was increased in Ang II-infused wild-
type (WT) (Apln+/y) mice aorta (Fig. 1 E and F). A similar pattern
was also seen in the thoracic aorta from patients with bicuspid
aortic valve and aortopathy (SI Appendix, Fig. S2A).
Ang II is a well-known mediator of adverse vascular remodeling

and is widely used in AAA models (18–21). The up-regulation of
APLN levels in the diseased aorta suggest that the APLN pathway
is responsive to disease. To determine the role of APLN in AAA,
we tested the effects of Ang II in WT (Apln+/y) and APLN
knockout (Apln−/y) mice. Four weeks of Ang II infusion resulted

in high incidence of severe AAA in the Apln−/y but not in parallel
WT mice (Fig. 2A). The AAA in Apln−/y mice was associated with
aortic dissection, intramural hematoma, and increased mortality due
to aortic rupture (Fig. 2 B and C). Among the 23 Apln−/y mice that
received Ang II, 5 died fromAAA rupture, 18 survived, and 12 of the
survivors developed AAA (Fig. 2 A–C). Vascular ultrasound imaging
showed progressive greater dilation, localized aneurysm formation,
and decreased compliance (aortic expansion index) in the abdominal
aorta of Ang II-infused Apln−/y compared with Apln+/y mice, whereas
no difference was observed between the genotypes at baseline (Fig.
2D). Consistent with the phenotypic changes in the abdominal aorta,
thoracic aorta also displayed adverse remodeling inApln−/y compared
with Apln+/y mice (SI Appendix, Fig. S2B). Histological analyses
confirmed disruption of the elastin lamellae in the aortic media and
excess fibrotic deposition in the adventitia in Apln−/y mice compared
with the uniform thickening of the aortic wall in Apln+/y mice in
response to Ang II (Fig. 2E). Overall, our findings demonstrate that
APLN is a major determinant in the pathogenesis of AAA.

APLN Deficiency Promotes Ang II-Induced Hypertension and VSMC
Stress. We next explored the mechanism for the enhanced sus-
ceptibility of APLN-deficient mice to Ang II-induced AAA. We
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Fig. 1. Up-regulation of APLN levels in vascular disease. (A and B) Adverse structural remodeling in surgical resected AAA specimens from patients as
revealed by Movat’s pentachrome (A) and anti-calponin staining to visualize SMCs (red, B) of NDA and AAA. The arrow heads in AAA images point to elastin
fiber fragments. L = aortic lumen. (B) Elastin fiber autofluorescence appears green. DAPI staining (blue) was used to visualize the nuclei. Averaged SMC
content (calponin-positive staining), and apoptotic SMCs (positive for TUNEL in green and DAPI staining) in the NDA and AAA are shown as boxes with scatter
plots on the right. n = 6/group. The arrows in AAA images point to apoptotic cells. (C) Immunostaining for APLN (red) with DAPI nuclear staining (blue), and
Western blots for APLN (D) in NDA and AAA specimens with averaged quantification of APLN levels shown in boxes with scatter plots; n = 7/group in C, n = 4/
group in D. (E) Immunostaining for APLN (red) with DAPI nuclear staining (blue), and Western blots (F) in abdominal aorta from WT mice receiving saline as
vehicle (Veh) or Ang II for 4 wk (1.5 mg/kg/d) with averaged quantification of APLN levels shown in boxes and scatter plots; n = 4/group. *P < 0.05 compared
with the NDA group; #P < 0.05 compared with the Veh group; A.U., arbitrary units.
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determined the impact of Apln deficiency on vascular function
and showed stronger Ang II-induced vasoconstriction in Apln−/y

mesenteric resistance arteries compared with Apln+/y arteries
associated with marked suppression of basal phospho-eNOS
(Ser1177) levels (Fig. 3A and SI Appendix, Fig. S3 A and B). In
vivo telemetric blood pressure measurement demonstrated that,
although baseline blood pressure was equivalent in both geno-
types, Ang II resulted in a greater increase in mean arterial blood
pressure (MABP) during the day and night in Apln−/y compared
with parallel Apln+/y mice (Fig. 3B). In contrast to Ang II effects,
the intrinsic myogenic response and maximal vasoconstriction in
response to high extracellular potassium was equivalent in both
genotypes (SI Appendix, Fig. S3 C–E). To test whether the Ang
II-induced higher blood pressure in Apln−/y mice accounted for
AAA formation, we used another hypertensive agent, phenyl-
ephrine (PE), to induce the same degree of hypertension. In-
terestingly, no AAA was observed in either Apln−/y mice or their
parallel control Apln+/y mice after 4 wk of PE infusion (SI Ap-
pendix, Fig. S4). These results demonstrate that the APLN-
deficient vasculature is intrinsically susceptible to the adverse
effects of Ang II-induced vascular remodeling.
We investigated the cellular basis for the enhanced suscepti-

bility to AAA formation in Apln−/y mice and found reduced
VSMC density, increased apoptotic cell death, and cleaved cas-
pase 3 levels following 2 wk (SI Appendix, Fig. S5A) and 4 wk
of Ang II infusion (Fig. 3 C and D). These cellular phenotypes
were concordant with a marked suppression of survival signaling

pathways, Akt and Erk1/2 pathways, whereas preventing Ang II-
mediated phosphorylation of p38 and JNK1/2 MAPK (SI Ap-
pendix, Fig. S6). These changes were associated with elevated
oxidative stress as evident by the increased number of dihydro-
ethidium (DHE)-positive cells in the aortic wall coupled with
elevated NADPH oxidase (Fig. 3 E and F and SI Appendix, Fig.
S5B) and in situ gelatinase activities reflecting the action of
matrix metalloproteinases 2 and 9 (SI Appendix, Fig. S7).
Next, we characterized the impact of APLN deficiency on

VSMCs in response to Ang II in vitro. In cultured primary aortic
SMCs from human and mouse aorta (SI Appendix, Fig. S8),
APLN expression was knocked down using specific APLN-
siRNA (siAPLN), whereas scrambled siRNA (siNS) was used
as the control (Fig. 4A). Ang II treatment increased Apln mRNA
levels in control human and mouse SMCs (siNS) but induced a
markedly higher rate of apoptotic cell death in the siAPLN
SMCs of both species (Fig. 4B) accompanied by elevated
oxidative stress and DHE levels in these SMCs (Fig. 4C). ACE2
has emerged as a major negative regulator of the RAS by converting
Ang II into Ang 1–7 (5). We identified Ang II-mediated tran-
scriptional up-regulation of Ace2 mRNA in human and murine
VSMCs (Fig. 4D) in association with increased ACE2 protein
levels in diseased murine aortas (Fig. 4 E and F). Suppression of
APLN markedly inhibited Ang II-mediated rise in Ace2 mRNA
and ACE2 levels (Fig. 4 D–F). These data demonstrate that Ang
II-induced AAA in Apln−/y mice is due to the intrinsic suscep-
tibility of the vasculature to adverse remodeling due to the lack
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of APLN-mediated up-regulation of ACE2 and its prosurvival
effects on VSMCs.

NEP Is a Key Enzyme that Inactivates APLN Peptides. Our results
suggest that enhancing APLN action may be a therapeutic
strategy for preventing or slowing the progression of AAA, a
disease lacking effective medical therapy. We hypothesized that
up-regulation of neutral endopeptidase (EC 3.4.24.11, NEP, and
neprilysin) (22, 23) in disease degrades endogenous APLN
thereby promoting AAA formation. Western blot analysis and
immunostaining showed that NEP levels are increased in dis-
eased murine and human aortas (Fig. 5 A and B and SI Appendix,
Fig. S9). We next examined the ability of NEP in inactivating
APLN peptides which could provide a fundamental mechanism
for the pathogenesis of AAA. Computer modeling and simula-
tion demonstrated a feasible model of APLN-17 binding with the
active catalytic site in NEP (His583, His587, and Glu646) result-
ing in the cleavage of APLN-17 at 2 distinct sites, Arginine8-
Lysine9 and Lysine9-Serine10 (Fig. 5C and SI Appendix, Fig.
S10). Other active site residues in NEP that facilitate the binding
of APLN-17 in the catalytic pocket are Arg102, Arg110, Glu533,
Val541, Ser546, Ser547, Ile585, Glu646, Ile648, Gly655, Ala657,
Tyr697, Val710, His711, and Arg717 (Fig. 5C). To confirm this
prediction, we used a biochemical assay and found that ex vivo
incubation of APLN-17 in human plasma with recombinant NEP
resulted in efficient degradation of APLN whereas the application
of a NEP inhibitor, sacubitrilat, elevated steady-state APLN levels
(Fig. 6A) with corresponding inverse changes detected in plasma
APLN 17 products, APLN 9–17 and APLN 10–17 peptides (SI

Appendix, Fig. S11). The APLN degradation products were com-
pletely inactive demonstrating a key functional role of NEP in
degrading APLN (Fig. 6B). We next tested the in vivo role of NEP
in metabolizing APLN-17. Genetic loss or pharmacological in-
hibition (by sacubitrilat) of NEP potentiated the hypotensive ac-
tion of APLN-17 (Fig. 6C) and markedly elevated plasma levels of
APLN-17 (Fig. 6D). These results highlight a dominant role for
NEP in metabolizing and inactivating the endogenous APLN-17
peptide, which implied the NEP resistant APLN analog is much
needed for therapeutic use in vivo.

APLN Analogs Have Improve Pharmacokinetics and Equivalent
Pharmacodynamics. Native APLN peptides are easily degraded
and have short half-lives (14, 24, 25). Therefore, we designed and
tested 35 different analogs and were able to identify and develop a
long-lasting stable APLN-17 analog NMeLeu9Nle15Aib16BrPhe17-
APLN-17 (abbreviated as APLN-NMeLeu9A2) (Fig. 7A) and
confirmed a marked improvement in plasma levels and hypo-
tensive effects (Fig. 7 B and C). The APLN receptor (formerly
known as APJ) is the only known native receptor for APLN
peptides in mammals (26). Binding studies with the murine
APLN receptor showed that murine Gi activation and β-arrestin
recruitment were maintained by APLN-NMeLeu9A2 at similar
levels compared with native APLNs, minimizing the possibility of
off-target effects of APLN analogs (Fig. 7 D–G). Our NEP re-
sistant APLN-17 analog (APLN-NMeLeu9A2) represents a thera-
peutic approach for AAAs.
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Therapeutic Effects of a Stable APLN Analog in an Experimental
Model of AAA. To test the therapeutic potential of our synthetic
APLN analog designed to be resistant to NEP-mediated degradation,

we utilized a well-established model of an AAA. We used a murine
model lacking low-density lipoprotein receptors (Ldlr−/−) given a
HFD and Ang II infusion (21, 27). Although the placebo-treated
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group (Ldlr−/−-Ang II + placebo) showed a 50% mortality mainly
due to aortic rupture in the abdominal region, treatment with the
APLN analog (Ldlr−/−-Ang II + APLN-NMeLeu9-A2) had no

incidence of aortic rupture after 4 wk of Ang II infusion (Fig. 8A).
Vascular ultrasound showed that the administration of APLN-
NMe17A2 prevented aortic lumen dilation and preserved aortic
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compliance (expansion index) (Fig. 8B). Structural analysis of the
abdominal aorta provided definitive evidence that Ang II-
mediated aortic pathology in Ldlr−/− mice was prevented by treat-
ment with APLN-NMe17A2. Importantly, mice receiving APLN-
NMeLeu9-A2 preserved SMC density and elastin structure, and
reduced apoptosis (TUNEL and cleaved caspase 3 levels) in the
aortic wall in response to 2 and 4 wk of Ang II infusion (Fig. 8 C
and D). Intriguingly, APLN analog supplementation increased
ACE2 levels in the aortic wall (Fig. 9 A and B), which has been
reported to have vasculoprotective effects (15). In isolated
VSMCs, Ang II-mediated production of reactive oxygen species
determined by DHE fluorescence and NADPH oxidase activity
were markedly attenuated by APLN-NMe17A2 (Fig. 9 C and D).
Our results highlighted a dominant role of the APLN pathway in
AAA and support the use of a stable APLN analog as a therapy
for AAA (Fig. 9E).

Discussion
Vascular diseases remain a major health burden, and AAs lack
effective medical therapy representing a progressive disease state
with a life-threatening but unpredictable risk for rupture (1, 2).
Currently, no pharmacological intervention effectively inhibits

the progressive expansion of human AAAs or prevents aortic
rupture (28, 29). In this study, we demonstrate a seminal role for
APLN in AAA pathogenesis using loss-of-function and gain-of-
function approaches. Using an Ang II-induced model of an
AAA, loss of APLN resulted in greater adverse remodeling and
propensity to develop an AAA, aortic rupture, and increased
mortality. Given the short half-life of native APLN peptides, we
identified NEP as a dominant inactivating enzyme for APLN-17.
This allowed us to design and synthesize a stable and bioactive
APLN analog that is resistant to NEP degradation, active in both
blood pressure in vivo as well as in vitro APLN receptor binding
studies; and it showed profound therapeutic effects for AAAs.
In aortic SMCs, APLN showed a dose-dependent protective

effect against Ang II-induced apoptosis and reactive oxygen spe-
cies stress, whereas loss of APLN exacerbated these responses,
consistent with a dominant role of apoptotic loss of VSMCs in the
progression of AAAs. A well-recognized characteristic in human
AAAs is the increased abundance and activation of matrix met-
alloproteinases in the diseased aortic tissues that was modulated
by the APLN pathway likely in response to changes in oxidative
stress. APLN action on endothelial cells including promoting
angiogenesis (6, 11, 12), APLN-mediated nitric oxide vasodilation
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(11), and direct antagonism of the Ang II/Ang II type 1 receptor
(10) highlights a key role of endothelial homeostasis as a critical
pathway protecting the aorta from AAA formation (29). Ang II
increases vascular tone, and excessive activation causes systemic
hypertension, which is a major risk factor for AAA, atherosclerosis,
and cardiac hypertrophy. The Ang II-induced vasoconstriction was
potentiated in Apln−/y arteries without affecting passive elasticity
and constrictive response to the α-adrenergic agonist PE. Indeed,
Ang II-induced greater hypertension in Apln−/y mice compared with
WT mice; however, this finding also poses a complexity in un-
derstanding the role of APLN in Ang II-induced adverse aortic
remodeling because of the potential involvement of hypertension.
As such, we used a PE-induced hypertension model and cultured
murine and human aortic SMCs to demonstrate the specific sus-
ceptibility of APLN-deficient VSMCs to the pathological effects
of Ang II.
Therapeutic supplementation with our stable APLN analog

exhibited protective effects against AAA formation and up-
regulated ACE2 which promotes vascular protective remodeling.
Indeed, decreased ACE2 in the Apln−/y mesenteric artery could
contribute to the increased sensibility of these mice to Ang II-
induced AAA which highlights the vasculoprotective effect of
Ang 1–7 (30). Basal ACE2 levels were lowered in the Apln−/y

aorta compared with WT and failed to increase in response to
Ang II. As such, the Ang II-mediated up-regulation of APLN in
WT mice, which, in turn, up-regulates ACE2 leading to the

conversion of Ang II into the protective Ang 1–7 peptide (5, 30)
represents a critical negative feedback mechanism to confer
vascular protection. The beneficial effects of APLN extend be-
yond the ACE2 pathway since Ang II infusion in Ace2−/y mice
does not recapitulate the severe phenotype observed in the
Apln−/y mice. Indeed, we identified a unique susceptibility of the
APLN-deficient VSMCs to Ang II-mediated apoptotic cell
death. Apln-deficiency reduced Ang II-mediated phosphoryla-
tion of Akt and Erk1/2 in the aorta consistent with the ability of
the APLN peptide to activate a classic G protein coupled re-
ceptor leading to PI3 kinase activation and phosphorylation of
Akt and Erk1/2 pathways (6, 14, 31).
Enhancing APLN action offers promising therapeutic effects

on the aorta. We show that cleavage of APLN-17 by NEP
completely inactivates this peptide, and the marked increase in
NEP in a human aorta with AAA is likely a key mechanism of
the progression of AAA. Computational modeling of the in-
teraction between NEP and APLN-17 showed that the catalytic
residues that promote the cleavage of the peptide, and other
active site residues that assist APLN-17 binding are situated in
the C-terminal region of the enzyme which implicate a domain
specific enzyme catalysis. MICU2, a regulatory subunit of the
mitochondrial calcium uniporter complex is protected from Ang
II-mediated injury to the abdominal aorta associated with a
marked up-regulation of Apln expression (20), whereas APLN
also mediates protective effects in atherosclerosis (10) consistent
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with a vascular protective effect of APLN peptides. Our study
clearly defines the APLN pathway as a central node in the
pathogenesis of AAAs and the therapeutic strategy of enhancing
the APLN pathway in treating AA. Enhancing APLN improves
metabolic function and prevents sarcopenia and aging-related
loss in muscle function (8), protects the failing heart (9, 32, 33)
and pulmonary vasculature in patients with pulmonary arterial
hypertension (7), and, as such, APLN analogs may confer unique
therapeutic effects beyond AAAs.

Materials and Methods
All animal experiments were carried out in accordance with the Canadian
Council on Animal Care Guidelines, and animal protocols were reviewed and
approved by the Animal Care and Use Committee at the University of Alberta.
Diseased and nondiseased human abdominal aortic specimens were collected

at the University of Rochester, NY. Written consent was obtained from all par-
ticipants, and our study was approved by the University of Rochester, Research
Subjects Review Board. Ascending thoracic aorta from patients with bicuspid
aortic valve, aortic dilation, and nondiseased aorta were collected as described
before (34, 35). Materials and experimental procedures for animal models and
protocols, peptide analysis and metabolism, RNA isolation, Taqman PCR, cell
culture, tissue and cellular staining and immunofluorescence, flow cytometry,
ultrasonic vasculography, vascular myography, blood pressure measurement,
computer modeling, receptor binding, protein isolation, Western blotting, and
quantification and statistical analysis are described in SI Appendix, SI Materials
and Methods.
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SI Materials and Methods 

Experimental Animals and Protocols. Apelin deficient (Apln-/y) and littermate wildtype (Apln+/y) 

mice were generated and breed in a C57BL/6 background as previously described (1). The Nep-/- 

knockout mice were obtained from Harvard University, which were generated originally as 

previously described (2) and were backcrossed into C57BL/6 background at least 9 times. Male 

LDL receptor deficient (Ldlr-/-) mice and age-matched wildtype (WT or Apln+/y or Ldlr+/+) mice 

were generated and bred in a C57BL/6 background. Mice were housed at a constant temperature 

and humidity with a 12 h–12 h light–dark cycle and free access to food and water. All animal 

experiments were carried out in accordance with the Canadian Council on Animal Care Guidelines, 

and animal protocols were reviewed and approved by the Animal Care and Use Committee at the 

University of Alberta. 

 

Human Explanted Aorta. Diseased and non-diseased human abdominal aortic specimens were 

collected at the University of Rochester, New York. Written consent was obtained from all 

participants and our study was approved by the University of Rochester, Research Subjects Review 

Board. Ascending thoracic aorta from patients with bicuspid aortic valve and aortic dilation, and 

non-diseased aorta was collected as described before (3, 4).  

 

Angiotensin II (Ang II) and phenylephrine (PE) Infusion in vivo. Alzet micro-osmotic pump 

(model 1002 or 1004; Durect Co.) was implanted subcutaneously at the dorsum of the neck to 

deliver Ang II (1.5 mg/kg-1d-1), phenylephrine (PE) (40 mg/kg-1d-1) or vehicle (saline) for 14 days 

or 28 days in WT, Apln -/y mice or high-fat fed (42%) Ldlr -/- mice (5, 6). 

 

Histological Analyses, TUNEL, and immunofluorescence staining. After 2 weeks or 4 weeks of 

Ang II or saline infusion, mice underwent whole-body perfusion‐fixation via the left ventricle, with 
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10% buffered formalin (80 mmHg, 20 min). (7) Aortas were dissected and imaged for gross 

morphological assessment, then fixed in formalin and paraffin-embedded. Three sections were 

obtained from each aorta and the imaging and analysis were standardized between all groups. Five-

micrometer thick formalin fixed paraffin embedded (FFPE) sections of aortas were stained for 

Movat’s pentachrome to evaluate morphological alternations. (7-9) In situ DNA fragmentation was 

detected in 5-μm thick FFPE aortic sections using the commercially available terminal 

deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) assay kit according to the 

manufacturer’s instructions (Catalog No. A23210, APO-BrdU™ TUNEL Assay Kit, Invitrogen™, 

Thermo Fisher Scientific Inc. USA) as previously described.(10) Five-micrometer thick FFPE 

sections were also subjected to immunofluorescent staining for ACE2, calponin, apelin and NEP (7, 

10) and detailed below.  

            Immunostaining for apelin was performed on 5 µm thick formalin fixed paraffin embedded 

(FFPE) aortic sections (Ultra Plus®, Thermo Scientific). Sections were treated for 20 mins at 65 °C 

then deparaffinized and rehydrated stepwise before staining. Antigen retrieval was performed using 

a citrate buffer. After blocking with 1% bovine serum albumin (BSA), tissue sections were incubated 

with primary antibodies at 4°C for overnight, goat anti-apelin (Santa Cruz Biotechnology Inc., CA, 

USA) diluted to 1:100 in 1.5% BSA prepared in phosphate-buffered saline. Secondary antibody of 

Alexa Fluor 594 conjugated donkey anti-goat (Invitrogen) was used at a dilution of 1:400 and 

incubated for 1 hr at room temperature. After washing all antibodies, the nuclei were stained using 

ProLongTM Gold antifade reagent with DAPI (Invitrogen). 

           Similarly, immunostaining for NEP was performed on 5 µm thick paraffin-embedded aortic 

sections (Ultra Plus®, Thermo Scientific). Sections were dried for 20 mins at 65 °C then 

deparaffinized and rehydrated before staining. Antigen retrieval was performed using a citrate 
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buffer. After blocking with 1.5% BSA, tissue sections were incubated with mouse NEP antibody 

(R&D system, AF1126-SP) diluted to 1:100 in 1.5% BSA prepared in phosphate-buffered 

saline.  Secondary antibody of Donkey anti-mouse IgG Alexa Fluor 594 (Invitrogen) was used at 

a dilution of 1:400 and incubated for 1 hr at room temperature. Following 3 rounds of washing 

the section, nuclei were stained using ProLongTM Gold antifade reagent with DAPI (Invitrogen). 

Imaging and quantification for all immune-fluorescent histological staining were performed by 

MetaMorph® Basic (version 7.7.0.0) software. Based on identical imaging conditions among 

comparing groups, including the exposure time, positive signals were detected and quantified 

based on pixels and density (reported as arbitrary unit or A.U.) in expressional level studies e.g. 

calponin, ACE2, apelin and NEP; or manually counted (e.g., TUNEL and DAPI staining) and 

reported as percentage.  

 

Dihydroethidium (DHE) Staining and NADPH Oxidase Activity. For DHE and NADPH 

staining, fresh aortas were collected (without perfuse-fixation) and preserved in OCT at -80°C. 

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was quantified by 

lucigenin enhanced chemiluminescence using a single‐tube luminometer (Berthold FB12, Berthold 

Technologies, Germany) modified to maintain the sample temperature at 37°C as previously 

described. (11) NADPH (1 mM) and Lucigenin (50 μM) were added to 100 μg of protein extracts in 

the presence or absence of diphenylene iodonium (DPI; 10 μM), a selective inhibitor of flavin‐

containing enzymes including NADPH oxidase. Light emission was measured every 1 second during 

a 5‐min period using a single‐tube luminometer (Berthold FB12, Berthold Technologies, Germany) 

at 37°C.  

           Dihydroethidium (DHE) staining was performed on aortic SMCs and OCT-embedded aorta 

sections and visualized using a fluorescence microscope (Olympus IX81) as previously described. 
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(11) For SMCs, after 1 hour of incubation with or without Ang II (1 μM), cells were incubated with 

DHE (20 μM DHE, final concentration in culture media; Sigma Aldrich) at 37°C for 30 minutes in 

the dark. For OCT aorta sections, first thaw slides (Cryosection) to room temperature (RT) for 5min; 

Cover slides with HBSS 5min; Add DHE solution in HBSS on the sections for 20min RT; then 

transfer the slides to 37°C for 30min; Wash slides with HBSS 3 times; Add anti-fade-no DAPI on 

the sections and put on the cover glass. Fluorescence images were captured with a fluorescence 

microscope (IX81, Olympus) after washing with PBS. Quantitative measurements of DHE 

fluorescence intensity were carried out using the Metamorph Basic software (version 7.7.0.0), 

regions congruent to the cell nuclei boundaries were drawn, the average pixel intensities were 

calculated and corrected by subtracting the background, and reported here as DHE intensity. 

 

 

Ultrasonic Vasculography. Ultrasonic images of the aortas were obtained in mice anesthetized with 

1.5% isoflurane using a Vevo 2100 high resolution-imaging system equipped with a real time 

microvisualization scan head (RMV 704, Visual Sonics, Toronto, Canada). The operator was 

blinded to the genotype and treatment of the mice and aortic diameters were measured by M‐mode 

at the ascending thoracic aorta, aortic arch and abdominal aorta. The maximum aortic lumen 

diameter (corresponding to cardiac systole) and the minimum aortic lumen diameter (corresponding 

to cardiac diastole) recordings were measured and used to calculate the aortic expansion index 

[(systolic aortic diameter-diastolic aortic diameter)/systolic diameter× 100]  (7).  

 

 

Primary Aortic Smooth Muscle Cells (SMCs) Cultures. Primary mouse aortic SMCs were 

isolated using enzymatic digestion method from 3-4 weeks old male WT and Apln-/y mice as reported 

before.(12) Briefly, after removal of the surrounding adipose tissue, aorta was incubated in HBSS 
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(Catalogue. No. 14025076 Gibco® HBSS, Thermo Fisher Scientific Inc. USA) containing 0.744 

U/ml elastase (Catalogue No. LS006365, Worthington Biochemical Corporation, USA), 1 mg/ml 

collagenase type II (Worthington), and 1 mg/ml trypsin inhibitor (Worthington) for 10 min at 37 °C 

to facilitate the complete removal of the adventitial layer. The intimal layer was scraped off gently 

with curved fine-tip forceps after the aorta was opened longitudinally. Then the aorta was minced 

into small pieces (1 mm×1 mm) and further digested for 2 hours at 37°C. The digestion process was 

terminated by adding an equal volume of DMEM/F12 culture medium containing 20% FBS (DF20). 

The cell pellet was collected by centrifugation at 300×g for 5 min, suspended in 1 ml of DF20 and 

given 48 hrs for attachment and spreading. Primary mouse aortic SMCs were weaned into 

DMEM/F12 culture medium containing 10% FBS (DF10) after passage 3. Cells at passages 4-7 

were used for experiments.  

           Human primary aortic SMCs were isolated using tissue explant method as before.(13) Tissue 

specimens from the aortic root of healthy donors were washed twice with sterile ice-cold PBS 

containing 0.5 μg/ml fungizone (Giboco) and 50 μg/ml gentamycin (Giboco). The endothelial cells 

were scrapped off from the intimal layer by a sterile scalpel blade. The adventitial layer was removed 

by curved forceps. The remaining medial layer of the aortic tissue was then gently agitated in HBSS 

(Giboco). Next, transverse muscle strips (2 mm in width) was peeled off from the medial layers 

using fine-tip forceps. All the collected muscle strips were cut into smaller cubes (2 mm×2 mm) 

using a sterile blade. The chopped cubes were then washed twice with HBSS, and evenly distributed 

into 25 cm2 culture flasks with a minimum density of 25 cubes/flask, incubated for 24 hours before 

an additional 2 ml of DF20 was added. The culture medium was changed every 3 days. After 2weeks, 

the subconfluent (~70%) cells that migrated from aortic tissue explants were trypsinized and 

subcultured in DF10. Cells at passages 3-5 were used for experiments. For both primary mouse and 
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human aortic SMCs, the medium was supplemented with 100 U/mL penicillin and 100 μg/mL 

streptomycin as the final concentration. The purity of human and mouse aortic SMCs were assessed 

by staining of two specific SMC markers, smooth muscle myosin heavy chain 11 (MYH 11) and 

SM22. 

 

Small interfering RNA (siRNA) Transfection. Aortic SMCs were seeded into 6-well plate at a 

density of 105 cells/well (~50% confluency). The cells were transfected with Apln siRNA (10 μM) 

or scrambled siRNA (10 μM) for 48 hours in DF10 in the absence of antibiotics as per the 

manufacture’s instruction (Catalog No. 4392420 and 4390771, Silencer® Select siRNAs, Thermo 

Fisher Scientific Inc. USA). The efficiency of Apln knockdown in Apln siRNA treated cells (~97%) 

was confirmed by Taqman PCR analysis.(14) 

 

Annexin V/Propidium iodide (PI) Staining and Flow Cytometry Analysis. When 90% 

confluence was reached, Apln+/y, Apln-/y and Apln siRNA transfected aortic SMCs were serum-

starved for 24 hours in DMEM/F12 culture medium containing 0.5% FBS.  Cells were then treated 

with 1 µM Ang II or vehicle for 24 hours. Aortic SMCs exposed to staurosporine (1 µM as the final 

concentration, Santa Cruz Biotechnology, Inc.) for 6 hours were used as a positive control. Ang II 

induced apoptosis in aortic SMCs were assessed using an Annexin V-FITC/Propidium iodide (PI) 

kit for flow cytometry (BD Biosciences) as per manufacturer’s instruction. In brief, VSMCs were 

rinsed with ice-cold PBS and detached using accutase (BD Biosciences). The cells were collected 

by centrifugation (300-g, 5 min). Cell pellets were further washed twice with ice-cold PBS and 

resuspended in 100 µl of 1×binding buffer. Five μL of Annexin-V-FITC and 1µl of PI (100 µg/ml) 

were added to the cells and incubated in dark at room temperature for 15 minutes. After incubation, 
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400 µl of binding buffer was added to each sample. Cell apoptosis/death was evaluated using a BD 

LSR Fortessa and FACSDiva software (BD Biosciences). The acquired data were analyzed with 

FlowJo software (Treestar, Inc., San Carlos, CA). (15) 

 

Ex vivo Mesenteric Artery Pressure Myography. Mesenteric artery pressure myography was 

performed using the DMT pressure myography system (Danish Myo Technology (DMT), model 

P110, Denmark) according to the protocol provided by DMT with modification. Briefly, Apln+/y and 

Apln-/y mice were anesthetized (2% isoflurane), an intact small segment (~4 mm long) of third order 

mesenteric artery was isolated and mounted on the pressure myography system. Mounted vessels 

were pressurized in 10 mmHg increments (from 10 to 60 mmHg), for 5 min per increment. A “wake-

up” procedure was performed for all vessels before treatments were introduced which included the 

following steps: vessel was equilibrated at 60 mmHg, physiological salt solution (PSS) was replaced 

with 6 mM KPSS (HK) to trigger contraction, vessel was allowed to contract for 3 min, KPSS was 

washed out with PSS until baseline diameter was reached, KPSS contraction and PSS washes were 

repeated, and noradrenaline (10-6 M) was added to PSS to induce a contraction. Once the contraction 

of the vessel reached a plateau, acetylcholine (10-5 M in the PSS bath) was added to assess 

endothelium-dependent vasodilation. The vessel was washed 5 times over 30 min, and was then 

ready for experiments. The volume of the bath was maintained at 10 mL for all treatments. In Ang 

II dose-response experiments, different amounts of Ang II were added to reach desired final 

concentration in the bath after the vessel constriction reaches a plateau with the previous dose. In a 

different set of experiments, to study the vasoconstriction and relaxation of Ang II over time, 0.1 

μM of Ang II was used to induce vasoconstriction for 5 min, then washed with PSS buffer and 
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vessels were allowed to rest for 30 min. For the second treatment, 0.1 μM of Ang II was used to 

induce vasoconstriction for another 5 min and vessel diameter was continuously recorded. 

 

Continuous Blood Pressure Recording in Conscious Mice. The Apln+/y and Apln-/y mice were 

individually housed at a constant temperature (21±1°C) and relative humidity (50±2%) to give them 

sufficient cage space and avoid signal interference. DSI PhysioTel PA-C10 Pressure Transmitter 

(Data Sciences International, St. Paul, MN) was implanted subcutaneously in the abdominal region 

and the catheter cannulated into the aorta via the right carotid artery.(16) Mice were allowed to 

recover from surgery for one week, after which baseline blood pressure was recorded for 3 days. 

The sampling hours for blood pressure on each day were 12am to 2am (night) and 12pm to 2pm 

(day). Subsequently, Ang II (1.5mg/kg/d) was delivered by micro-osmotic pump implanted 

subcutaneously in the dorsum of the neck. Blood pressure was recorded each day for 12 days after 

Ang II pump implantation. 

 

Apelins and Analogues Intravenous Injection, Blood Pressure Measurement. The Apln+/y and 

Nep-/- mice were anesthetized using 1.5% isoflurane/oxygen, and body temperature was monitored 

and maintained at 37 °C. The aortic arch was reached via the right carotid artery using a PV loop 

catheter (Model 1.2F from Scisense, Transonic) in order to record arterial blood pressure and heart 

rate. Data was recorded and analyzed with software LabScribe 2.0, Scisense. Apelin 17 (1.4 

μmole/kg, Tocris Bioscience, Bristol, UK), or apelin 17 fragments (1-8), (1-9), (9-17) or (10-17) 

(1.4 μmole/kg body weight) or apelin analogue (Apelin-NMe 17 A2, 1.4 μmole/kg body weight) or 

same volume of vehicle were given via the right jugular vein. For Neprylisin inhibition, Sacubitrilat 

(1.3 mmole/kg body weight i.v.) was given 10 min in advance. Blood pressure was recorded as 

baseline for 5 mins after stabilization and for 30 mins after giving drugs. 



10 
 

 

Western Blot and Taqman PCR analyses. Protein was extracted from aorta using RIPA lysis 

buffer containing protease and phosphatase inhibitor cocktails, and quantified using the BCA Protein 

Array Kit (Pierce, Rockford, IL). Equal amounts of protein extracts were loaded and separated by 

SDS-PAGE gel and then transferred to polyvinylidene fluoride (PVDF) membranes. The membranes 

were blocked for 1 hr at room temperature with 5% skim milk in TBST, and then incubated with 

primary antibodies overnight at 4°C, followed by HRP-linked secondary antibodies. The probed 

proteins were detected with Amersham ECL Prime detection reagent and visualized with 

ImageQuant LAS 4000 Mini Biomolecular Imager (GE Healthcare, Baie-d'Urfé, QC, Canada). The 

expression levels of target proteins were quantified by densitometry using the equipped software and 

reported as ratio over loading control and reported as arbitrary unit (A.U.). Primary antibodies used 

in this study were: ACE2 (ab15348, Abcam), APLN (ab59469, Abcam), and NEP (AF1126-SP, 

R&D system). Equal loading of protein was confirmed by staining the membrane with Pierce™ 

Reversible Protein Stain Kit for PVDF Membranes (ThermoFisher Scientific, USA). Apln mRNA 

expression in aortic SMCs was quantified by Taqman analysis as previously described (17). 

 

Modeling of Apelin-17 Interaction with NEP. We selected the structure of human neprilysin 

complex with sacubitrilat, an ethyl ester prodrug of LBQ657 (PDB ID: 5JMY), because of its high 

quality resolution (2Å), appropriate R-factor (free: 0.228, work: 0.186), and errorless electron 

density map for the preparation of apelin-17 bound neprilysin complex model(18). This structure 

was then equilibrated in constant pressure-temperature condition (NVT, NPT) in the Groningen 

Machine for Chemical Simulations (GROMACS). We performed a knowledge-based docking 

using the binding grid of the ligand sacubitrilat obtained from the above mentioned bound complex 
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structure of human neprilysin. We built the structure of peptide apelin 17 using the modelling server 

Peptide Builder (http://www.peptidesguide.com/peptide-builder.html). We used the Autodock 

Vina docking method to model the neprilysin-apelin 17 complexes (19). The grid for docking was 

developed using structurally aligned sacubitrilat with apelin-17. Using the built-in Grid map option, 

we prepared the axes dimensions and centre points for performing the docking of apelin 17 with 

human neprilysin. After selecting the conformations of the ligand that best fit with the conformation 

of bound sacubitrilat in reference template of human neprilysin, we refined and optimized the 

complex based on the active site residues using COOT (20). For visualization, analysis of the 

structural features, detecting peptide interactions and catalytic residues involved in peptide 

hydrolysis, we used PyMol(21) and Chimera (22). 

 

Measurement of Plasma Apelin Peptide and Analogue. Circulating apelin peptide 

concentrations were determined by mass spectrometry (MS) using plasma samples collected in the 

presence of an inhibitor cocktail completely blocking peptide metabolism, containing broad 

spectrum inhibitors against metalloproteases (EDTA, 1,10-phenanthroline), aspartic proteases 

(pepstatin A), cysteine proteases (p-hydroxymercuribenzoic acid), serine proteases (AEBSF), and 

specific inhibitors for renin and aminopeptidases A and N to a final concentration of 5% v/v 

(Attoquant Diagnostics, Vienna, Austria). (23) 

 

Plasma Apelin Measurement. Stabilized protease inhibitor (see above) plasma was spiked with 

200 pg of stable isotope-labelled internal standards of apelin 17 (Sigma Aldrich) and subjected to 

C18-based solid phase peptide extraction and subsequent LC-MS/MS analysis using a reversed 

phase analytical column operating in line with a Xevo TQ-S and the apelin analogue, Apelin-
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NMeLeu9A2. Stable isotope labelled apelin 17 was used as internal standard for apelin 17. Apelin 

and analogue concentrations were calculated considering the corresponding response factors 

determined in calibration curves in original sample matrix, on condition that integrated signals 

exceeded a signal to-noise ratio of 10. 

 

Apelin 17 Metabolism in Human Plasma. Metabolic analysis of apelin 17 was investigated in 

human plasma in the presence of recombinant human NEP. A solution of 1 µg/ml of apelin 17 was 

spiked with plasma of healthy volunteers supplemented with 100 ng/ml recombinant human NEP 

(Catalogue No. 10805-HNCH, Sino Biological, Canada) and incubated at 37 °C for 0, 5, 10 and 20 

min. Following incubation periods, samples were spiked with 200 pg of stable isotope labelled 

internal standards for apelin 17 (Sigma-Aldrich) and subjected to solid-phase-extraction and 

subsequent LC-MS/MS-analysis. Calibration curves for the apelin metabolites, apelin 9-17 and 

apelin 10-17 (Life Tech Austria), were prepared in the original sample matrix. The role of 

recombinant human NEP in metabolizing apelin 17 was investigated in human plasma with and 

without the NEP inhibitor, sacubitrilat. A solution of 1 µg/ml of apelin 17 was spiked to plasma of 

healthy volunteers in presence and absence of 100 ng/ml recombinant human NEP (Sigma-Aldrich) 

and in the presence or absence of the NEP-inhibitor, sacubitrilat (10 µM, Sigma-Aldrich) and 

incubated at 37 °C for 20 min. Following incubation, samples were spiked with 200 pg of isotope 

labelled internal standards for apelin 17 (Sigma-Aldrich) and subjected to solid-phase-extraction 

and LC-MS/MS-analysis as described above.  

 

Apelin and Analogue Receptor Binding Study.  The mouse apelin receptor (formerly APJ) 

plasmid was purchased from Origene (Rockville, MD, USA). The pE13F and K17F peptides were 
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purchased from Abcam (Toronto, ON, Canada). The Gibson assembly kit was purchased from New 

England Biolabs (Ipswich, NE, USA).  

Cloning: The mouse apelin receptor plasmid was subcloned from pCMV6 to pcDNA3.1 using the 

Gibson assembly kit and the Nhe1 and EcoR1 restriction sites. The primer was designed as follow:  

Primer Forward 5’-

CTCACTATAGGGAGACCCAAGCTGGCTAGCGGATCCGGTACCGAGGAGATCT-3’ and 

Primer Reverse 5’- 

GGCCGCCACTGTGCTGGATATCTGCAGAATTCAGTCCACAAGGGTTTCTTGACTATAG

GG-3’.  

Cell Culture and Transfection: All reagents and cell culture supplies, except where specified, were 

obtained from Invitrogen (Carlsbad, CA, USA). HEK293T cells were cultured in DMEM 

supplemented with 10% new calf serum and 100 U/mL penicillin/streptomycin at 37 °C under 5% 

CO2. Cells were seeded in 150cm² flasks (Corning, Corning, NY, USA) and 48 hours before the 

experiments, transiently transfected with the mouse apelin receptor in combination with BRET-

based biosensor cDNAs. Transient transfections were performed using 25 kDa linear 

polyethylenimine (PEI – Polysciences, Warrington, PA, USA) at a ratio of 3:1 PEI/DNA. The total 

amount of transfected DNA was kept constant (100 ng/wells) by the addition of salmon sperm 

DNA. 

BRET measurements for murine Gi activation and β-arrestin recruitment: Gi1 and Gi2 activation 

were assessed using BRET-based biosensors composed of Gαi1-RlucII (24) or Gαi2-RlucII (25) 

co-expressed with Gβ1 and Gγ1-GFP10. β-arrestin recruitment was assessed by monitoring 

ebBRET between β-arr1-RLucII or β-arr2-RLucII rGFP-CAAX (26). Forty-eight hours following 

transfection with the appropriate biosensors and apelin receptor, cells were stimulated with the 
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ligands for 1 or 5 min for the evaluation of Gi activation and β-arrestin recruitment, respectively. 

The luciferase substrate, coelenterazine 400a (2.5 μM) was added 5 min before the reads. BRET 

was monitored with a Mithras LB 940 (Berthold Technologies, Bad Wildbad, Germany) equipped 

with a 410/70-nm donor filter and a 515/20-nm acceptor filter. The data were analyzed in Prism 

(GraphPad) using ‘dose-response-stimulation log(agonist) vs normalized response-variable slope’ 

with the constraint of sharing the Hill slope across all dataset. 

 

Apelin Analogue and Aortic Aneurysm. Male Ldlr-/- mice (The Jackson Laboratory) received high 

fat diet (21% fat by weight, 42% kcal from fat, Teklad, Envigo TD.88137) at 8 weeks of age and 

throughout the study. One week after initiating high fat diet, osmotic pumps (Model 1004, Alzet) 

were implanted subcutaneously to deliver angiotensin II (Sigma-Aldrich) at a rate of 1.5 mg/kg/d 

for 28 days. Synthesized apelin analogue (Apelin-NMeLeu9A2) was given by daily intraperitoneal 

injection (3 mg/kg/d) for 28 days. 

 

Statistical Analysis. Statistical analyses were performed using SPSS software (Chicago, IL; 

Version 19). Hypothesis testing methods included Student’s t test or one-way analysis of variance 

followed by the Student Neuman-Keuls or Tukey. Survival data was analyzed using the Kaplan-

Meier method and the log-rank test was used to test for statistical significance. Statistical 

significance is recognized at p<0.05. Quantitative data are shown as box and scatter plots. The 

sample size throughout the manuscript indicates the number of independent samples. 
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Table S1. Subject Demographics 

 

 AAA NDA p-value 

N= 7 5  
Cadaver (%) 23 100 <0.01 

Age (Years) 72±9 73±11 0.89 

Male (%) 71 60  
Size (cm) 6.7±2.0 2.0±0.2 <0.01 

DM (%) 29 40 0.68 

HTN (%) 71 50 0.43 

CKD (%) 29 20 0.74 

COPD (%) 29 0 0.19 

Afib (%) 14 20 0.79 

Current Smoker (%) 86 60 0.31 

Statin (%) 57 40 0.56 

ACE-Inhibitor (%) 14 40 0.31 

Beta-Blocker (%) 80 60 0.49 

Anticoagulation (%) 14 0 0.38 

ASA (%) 71 50 0.43 

 

AAA = Abdominal Aortic Aneurysm 

NDA = Non-diseased Aorta 

 



A
NDA NDA NDA

AAA AAA AAA

50 µm 50 µm 50 µm

50 µm 50 µm 50 µm

Calponin TUNEL/Elastin DAPI

50 µm 50 µm

NDA AAA
Apelin/DAPIB

Figure S1. Larger magnification images of the immunohistological staining of abdominal 
aortic specimens. (A) Surgical resected abdominal aortic aneurysm (AAA) specimens from 
patients stained with calponin to visualize smooth muscle cells (red). NDA=non-diseased 
aorta; Elastin fiber autofluorescence appears green; DAPI staining (blue) was used to visualize 
the nuclei. (B)   Immunostaining for apelin (red) showing increased apelin levels in an AAA 
specimen compared to NDA.
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Figure S2. Adverse remodeling in the thoracic aorta in response to Ang II. (A) Western blot 
analysis for apelin in human thoracic (ascending) aneurysmal aorta (TAA) compared to 
non-diseased thoracic aorta (NDA); n=4 for each group. (B) Age-matched WT and Apln-/y mice 
show no difference in aortic lumen diameters at baseline (vehicle) but with a greater increase 
in aortic lumen diameter in the aortic arch in Apln-/y compared to wildtype (WT) mice in 
response to Ang II. Veh=saline; Ang II=angiotensin II. *p<0.05; n=12 for WT, n=18 for Apln-/y.
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Figure S3. Loss of apelin leads to greater mesenteric artery vasoconstriction in response to 
Ang II without affecting intrinsic myogenic response. (A) Apln-/y mesenteric artery demonstrat-
ed greater extent and more sustainable constriction in response to Ang II treatment, as well as 
maintained responsiveness on repeated Ang II stimulation; n=8 per group. (B) Western blot 
assay of p-eNOS(Ser1177) and eNOS levels in WT and Apln-/y aorta revealed a marked decrease in 
p-eNOS(Ser1177) levels in Apln-/y aorta; n=4 per group. (C) Representative images of mesenteric 
arteries in PSS and HK treatment with WT and Apln-/y mesenteric arteries showing similar 
lumen and outer diameter under PSS, and comparable maximal constriction induced by HK 
treatment (D); n=8 per group. (E) WT and Apln-/y mesenteric arteries showed similar passive 
elasticity in PSS, tested using pressure myography. PSS: physiological salt solution; HK: high 
potassium solution. *p<0.01 compare to PSS group; #p<0.01 compare to WT group.



80

100

120

140

160

M
AB

P 
(m

m
H

g)

5

10

15

20

25

30

35

0 0

100

200

300

400

500

600

Pu
ls

e 
Pr

es
su

re
 (m

m
H

g)

H
ea

rt 
R

at
e 

(B
PM

)

Day
Night

50

75

100

125

150
*

*

Sys Dia Sys Dia

*

*

Bl
oo

d 
Pr

es
su

re
 (m

m
H

g)

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0

10

20

30
Ao

rti
c 

D
ia

st
ol

ic
 

D
ia

m
et

er
 (m

m
)

Ao
rti

c 
Sy

st
ol

ic
 

D
ia

m
et

er
 (m

m
)

Ao
rti

c 
Ex

pa
ns

io
n 

   
  I

nd
ex

 (%
)

Ab
do

m
in

al
 A

or
ta

A C

D E

B

F

1mm 1mm

WT Apln -/y

WT Apln -/y WT Apln -/y

Apln
    

Ang
II 

-/y

Apln
    

PE
-/y

Apln    PE-/yApln    Veh-/y

Apln
    

PE
-/y

Apln
    

Veh
-/y

Apln
    

PE
-/y

Apln
    

Veh
-/y

Apln
    

PE
-/y

Apln
    

Veh
-/y

10
0m

s

M
 m

od
e

B 
m

od
e

Figure S4. Phenylephrine (PE) results in equivalent blood pressure increase in WT and Apln-/y 
mice without leading to abdominal aortic aneurysm formation. WT and Apln-/y mice show simi-
lar baseline blood pressure (A), pulse pressure (B) and heart rate (C) during day time and night 
time as recorded in conscious mice by implanted telemetry probes; n=8 in each group. (D) 
Delivery of PE (40 mg/kg-1d-1) using mini-osmotic pump, resulted in a similar increase in blood 
pressure in Apln-/y mice as induced by Ang II. Representative images (E) and quantification of 
ultrasound vasculography (F) revealed that PE treatment failed to change the aortic luminal 
size or result in AAA formation in Apln-/y mice; n=8 in each group. Sys=systolic; Dia=diastolic; 
MABP=mean arterial blood pressure. *p<0.05 compare to day time.
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Figure S6. Western blot analysis of signaling pathways in the aorta. Representative immuno-
blots and quantification of changes in phosphorylated Akt, threonine-308-Akt (A), 
serine-473-Akt (B), phosphorylated Erk1/2 (C), JNK1/2 (D), and p38 (E) at baseline and 
following 2 weeks of vehicle or Ang II infusion in WT and Apln-/y mice. n=4 in each group. 
*p<0.01 compared to vehicle group; #p< 0.05 compared to Ang II group. 
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Figure S8. Isolated smooth muscle cells at passages 3 to 5 from human and murine (WT and 
Apln-/y) aorta were characterized by immunofluorescence staining of smooth muscle myosin 
heavy chain 11, a specific marker for vascular smooth muscle cells (SMCs).
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Figure S9. Neutral endopeptidase (NEP) is upregulated in aneurysmal thoracic aorta. (A) NEP 
immunofluorescent staining in NDA and TAA aortas revealed increased expression in NEP 
along the intima in TAA aortas. (B) Western blot analysis of NEP also demonstrates an upregu-
lation of NEP in TAA aortas. NEP=neprilysin or neutral endopeptidase; NDA=non-diseased 
aorta; TAA=thoracic (ascending) aneurysmal aorta. n=4 in each group. *p<0.01 compare to 
NDA.



 Apelin 17 cleavage site L9 and S10

 Apelin 17 cleavage site R8 and L9
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Figure S10. Modeling of the interactions between neutral endopeptidase (NEP) and apelin 17. 
NEP complexed with apelin 17 illustrating the arginine 8-lysine 9 cleavage site (A) and lysine 
9-serine 10 cleavage site (B). The top panels illustrate the crystal structures of NEP while the 
electrostatic surface representations of NEP are shown in the bottom panels. NEP=neprilysin.
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Figure S11. In vitro assay showing that apelin-17 can be cleaved by NEP in human plasma. 
Human recombinant NEP can cleave apelin-17 and generate apelin 9-17 (A) and apelin 10-17 
(B) peptide fragments in a time-dependent manner (top panels). Sacubitrilat, a potent NEP 
inhibitor, can inhibit these cleavages and formation of peptide fragments (bottom panels). 
*p<0.01 compared to placebo groups, n=3 in each group.
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